Gea Johnson Structural Option Faculty Advisor: Dr. Hanagan September 23, 2011 Revised: December 16, 2011

1000 CONNECTICUT AVENUE

Washington DC

Technical Report 1: Existing Conditions

Table of Contents

Executive Summary
Introduction
Structural Overview
Foundation6
Framing and Floor System8
Lateral System11
Roof System
Design Codes12
Structural Materials13
Gravity Loads14
Dead and Live Loads14
Snow Load15
Flat Slab Interior Panel Gravity Check16
Column # 50 Gravity Spot Check16
Lateral Loads
Wind Loads18
Seismic Loads
Conclusion
Appendix A: Gravity Load Calculations
Appendix B: Wind Load Calculations45
Appendix C: Seismic Load Calculations
Appendix D: Typical Floor Plans65

Executive Summary

1000 Connecticut Avenue is a 12 story, 565, 000 GSF commercial office building located at the corner of K Street and Connecticut Avenue in Washington D.C. The building is used primarily for office space, but also contains retail space on the first level, commercial office space on levels 3-12, a roof-top terrace with a green roof, and four levels of underground parking.

The purpose of this technical report is to understand 1000 Connecticut Avenue, NW Office Building's existing structural system. The systems that were analyzed and explained thoroughly throughout this report include the floor framing system, roof system, and lateral load resisting system.

The wind loads were determined by using Analytical Procedure (method 2) outlined in ASCE 7-10 and the seismic loads were determined by using the Equivalent Lateral Force Procedure outlined in ASCE 7-10. The wind loads were calculated for both the North-South and East-West directions and it was found that the lateral forces due to the wind load were greatest in the N-S direction, resulting in a base shear of 1401 kips and an overturning moment of 107,251 k-ft. Since the structural system is a reinforced concrete moment frame in both directions, one seismic analysis was performed. Examination of the seismic forces showed that the calculated seismic base shear was 1001 k and the overturning moment was 95,973 k-ft.

In addition, spot checks were performed for an interior flat slab panel and an interior column. Both analyses resulted in conservative designs which are explained through a combination of simplifying assumptions and assumed dead loads.

The appendices in this report include hand calculations for the wind, seismic, snow, and gravity loads as well as typical floor plans and a building section.

Introduction

1000 Connecticut Avenue, NW Office Building is a new 12 story office building located at the northwest intersection of K Street and Connecticut Avenue in Washington DC, as can be seen in Figure 1. The 1000 Connecticut Avenue Office building is designed to achieve LEED Gold certification upon completion. Despite being used primarily for office space, the building is comprised of mix occupancies, which include: office space, a gymnasium, retail, and parking garages. The structure has 4 levels of underground parking. The building's total square footage is 555,000 SF with 370,000 SF above grade and 185,000 SF below grade.

Figure 1 Building Site

To create a new Washington landmark, the building is designed to complement surrounding institutions by blending both traditional and modern materials. The facade consists of a glass, stainless steel and stone panel curtain wall system. Exterior and interior aluminum and glass storefront windows and doors are on the ground level. The lobby and retail space are located on the 1st level, which has a 12'-6 1/2" floor-to-floor story height. A canopy facing K Street brings attention to the main lobby entrance, as can be seen in Figure 2.

Figure 2 Main Lobby Entrance facing K Street (left) and perspective of curtain wall system (right)

Technica Report 1

Beyond the main entrance is a two story intricate lobby space with carrera marble and Chelmsford granite flooring, aluminum spline panels integrated with glass fiber reinforced gypsum (GFRG) ceiling tiles and European white oak wood screens, as can be seen in Figure 3.

Figure 3 Perspective of lobby

The retail space is broken down into several retail stores facing K Street and Connecticut Avenue. These retail stores are housed behind storefront glass to enable display of merchandise to potential customers. The 2nd-12th levels have 10'-7 ½" floor-to-floor story heights. Housed on the typical levels (3rd-12th) is the office space. A combination of tall story heights and a continuous floor to ceiling glass façade enables natural daylight to enter the building space as well as provides scenery to the Washington monuments, Farragut Park , and the White House, as can be seen in Figure 4.

Figure 4 Perspective of typical office with floor-to-ceiling windows that supply views to the city

In addition, located on the penthouse level is a roof-top terrace with a green roof and a mechanical penthouse, as can be seen in Figure 5.

Figure 5 Perspective of green roof on roof-top terrace and mechanical penthouse

Housed on the basement levels (B1-B4) are underground parking and a fitness center. A total of 253 parking spaces are provided; level B1 has 19 parking spaces; level B2 has 74 parking spaces; level B3 has 78 parking spaces; level B4 has 82 parking spaces. In addition, the fitness center is located on level B1.

Structural Overview

1000 Connecticut Avenue Office Building's structural system is comprised of a reinforced concrete flat slab floor system with drop panels and a bay spacing of approximately 30 feet by 30 feet. The slab and columns combined perform as a reinforced concrete moment frame. The substructure and superstructure floor systems are both comprised of an 8" thick two-way system with #5 reinforcing bars spaced 12" on center in both the column and middle strips and 8" thick drop panels. The below grade parking garage ramp is comprised of a 14" thick slab with #5 reinforcing bars provided both top and bottom with a spacing of 12" on center.

Foundation

ECS Mid-Atlantic, LLC performed a geotechnical analysis of the building's site soil conditions as well as provided recommendations for the foundation. A total of five borings were observed in the geotechnical analysis. It was determined that a majority of the site's existing fill consists of a mixture of silt, sand, gravel, and wood. The natural soils consisted of sandy silt, sand with silt, clayey gravel, silty gravel, and silty sand. The soil varies from loose to extremely dense in relative density. Based on the samples recovered from the rock coring operations, the rock is classified as completely to moderately weathered, thinly bedded, and hard to very hard gneiss.

At the time of the study, the groundwater was recorded at a boring depth of 7.5 feet below the existing ground surface. The shallow water table is located at an elevation of 35 to 38 feet in the vicinity of the site.

1000 Connecticut Avenue, NW Office Building is supported by a shallow foundation consisting of column footings and strap beams, as can be seen in Figure 6. The typical column footing sizes are $4'-0'' \times 4'-0'', 5'-0'' \times 5'-0'', \text{ and } 4'-0'' \times 8'-0''.$

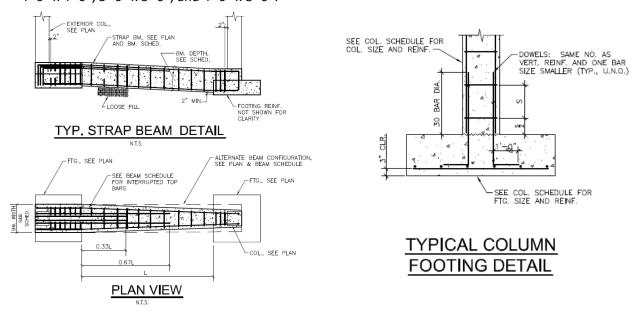


Figure 6 Details of typical strap beam and column footing

The footings bear on 50 KSF competent rock. The Strap beams (cantilever footings) are used to prevent the exterior footings from overturning by connecting the strap beam to both the exterior footing and to an adjacent interior footing. A simplified foundation plan can be seen in Figure 7.

The slab on grade is 5" thick, 5000 psi concrete with 6x6-W2.9xW2.9 wire welded fabric on a minimum 15 mil Polyethylene sheet over 6" washed crushed stone. The foundation walls consists of concrete masonry units vertically reinforced with #5 bars at 16" on center and horizontally reinforced with #4 bars at 12" on center and are subjected to a lateral load (earth pressure) of 45 PSF per foot of wall depth.

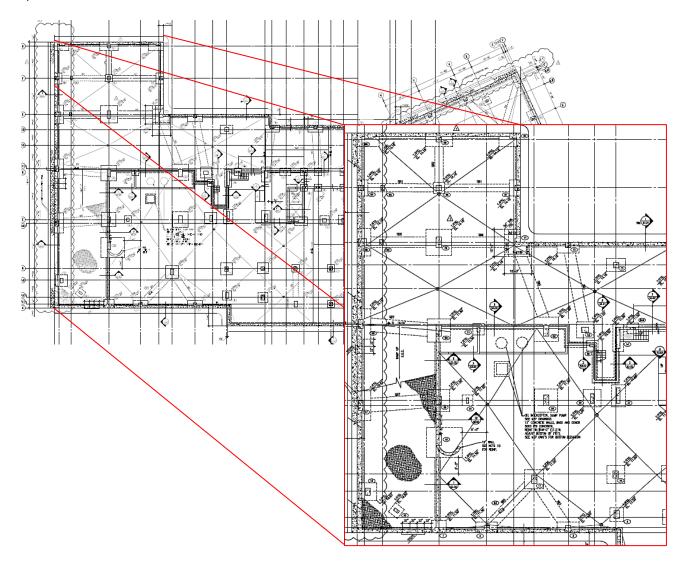
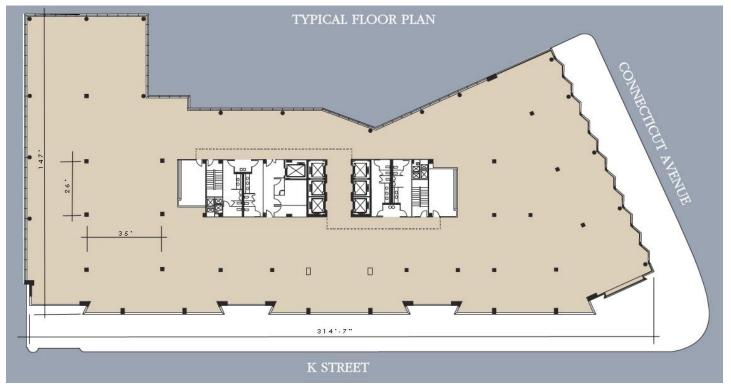
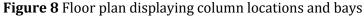
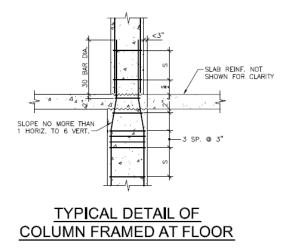
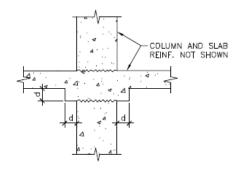




Figure 7 Foundation plan


	STRUCTURAL OPTION
GEA JOINISON	STRUCTURAL OF HUN


Framing and Floor System

The framing system is composed of reinforced concrete columns with an average column-to-column spacing of 30'x30', as can be seen in Figure 8. The columns have a specified concrete strength of f'c=8000 psi for columns on levels B4 to level 3, f'c=6000 psi for columns on levels 4-7, and f'c=5000 psi for columns on levels 8-mechanical penthouse. The columns are framed at the concrete floor, as can be seen in Figure 9, and the columns vary in size. The most common column sizes are 24"x24", 16"x48", and 24"x30". The column capitals are 6" thick, measured from the bottom of the drop panel, extending 6" all around the face of the column, as can be seen in Figure 10.

NOTE: d = COLUMN CAPITAL SIZE; SEE PLAN.

TYPICAL COLUMN CAPITAL DETAIL

Figure 9 Typical Detail of column framed at the floor

Figure 10 Typical column capital detail

The typical floor system is comprised of an 8" thick two-way flat slab with drop panels reinforced with #5 bottom bars spaced 12" on center in both the column and middle strips, as can be seen in Figure 11.

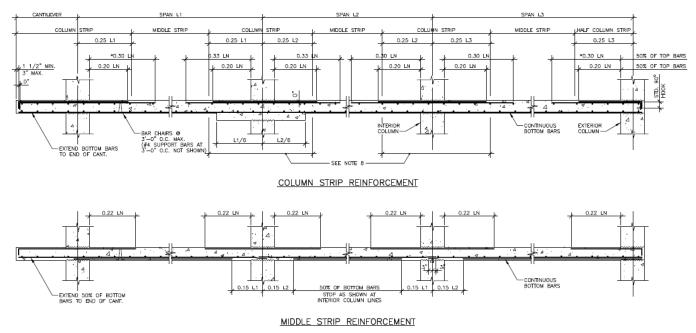
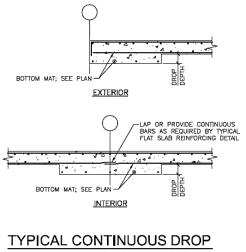
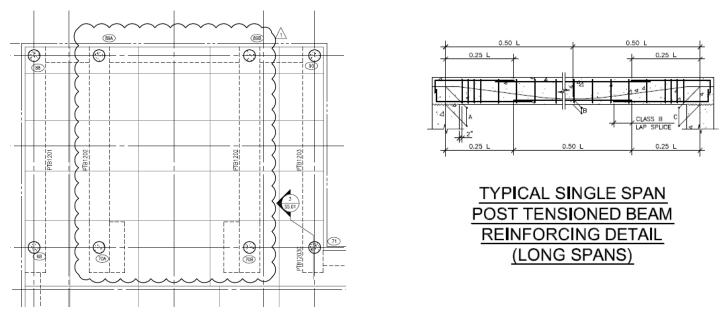
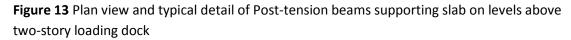



Figure 11 Typical two-way slab reinforcing detail

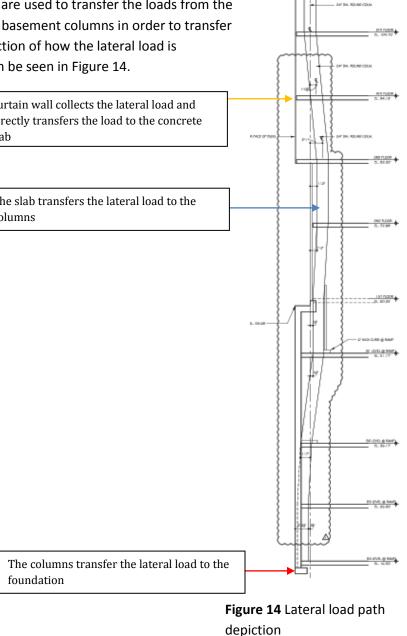

The individual drop panels are 8" thick, extending a distance d/6 from the centerline of the column, as can be seen in Figure 12.



REINFORCING DETAILS

Figure 12 Typical Continuous drop panel

A 36" wide by 3 ½" deep continuous drop panel is located around the perimeter on all floor levels. Levels 3-12 are supported by four post-tension beams above the lobby area. Due to the two story lobby, there's a large column-to-column spacing. As a result, post tension beams are used to support the slab on levels 3-12 located above the lobby. In addition, four post-tension beams support the slab on levels 3-12 that are located above the two-story parking deck, which also has a large column-to-column spacing, as can be seen in Figure 13.


noox.

Lateral System

The lateral system is comprised of a reinforced concrete moment frame. The columns and slab are poured monolithically, thus creating a rigid connection between the elements. The curtain wall is attached to the concrete slab, which puts the slab in bending. The curtain wall transfers the lateral load to the slab. The slab then transfers the lateral load to the columns and in turn the columns transfer the load to the foundation. Transfer girders on the lower level are used to transfer the loads from the columns that do not align with the basement columns in order to transfer the load to the foundation. A depiction of how the lateral load is transferred through the system can be seen in Figure 14.

> Curtain wall collects the lateral load and directly transfers the load to the concrete slab

The slab transfers the lateral load to the columns

Roof System

The main roof framing system is supported by an 8"thick concrete slab with #5 bars spaced 12" on center at the bottom in the east-west direction. The slab also has 8" thick drop panels. The penthouse framing system is separated into two roofs: Elevator Machine Room roof and the high roof. The elevator machine room roof framing system is supported by 14" and 8" thick slab with #7 bars with 6" spacing on center top and bottom in the east-west direction.

Design Codes

According to sheet S601, the original building was designed to comply with the following:

- 2000 International Building Code (IBC 2000)
- Building Code Requirements for Structural Concrete (ACI 318)
- Specifications for Structural Concrete (ACI 301)
- Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)
- Specification for the Design, Fabrication and Erection of Structural Steel for Buildings (AISC manual), Allowable Strength Design (ASD) method

The codes that were used to complete the analyses within this technical report are the following:

- ACI 318-08
- Minimum Design Loads for Building and Other Structures (ASCE 7-10)

Structural Materials

Table 1 below shows the several types of materials that were used for this project according to the general notes page of the structural drawings on sheet S601.

	Concrete (Cast-in-Place)	
Usage	Weight	Strength (psi)
Spread Footings	Normal	4000
Strap Beams	Normal	4000
Foundation Walls	Normal	4000
Formed Slabs and Beams	Normal	5000
Columns	Normal	Varies (based on column
		schedule)
Concrete Toppings	Normal	5000
Slabs on Grade	Normal	5000
Pea-gravel concrete (or grout)	Normal	2500 (for filling CMU units)
All other concrete	Normal	3000
	Reinforcing Steel	
Туре	Standard	Grade
Deformed Reinforcing Bars	ASTM A615	60
	ASTM A775	N/A
Welded Wire Fabric	ASTM A185	N/A
Reinforcing Bar Mats	ASTM A184	N/A
	Post-Tensioning (Unbonded)	
Туре	Standard	Strength (ksi)
Prestressed Steel (seven wire low-	ASTM A416	270
relaxation or stressed relieved		
strand)		
	Miscellaneous Steel	
Туре	Standard	Grade
Structural Steel	ASTM A36	N/A
Bolts	ASTM A325	N/A
Welds	AWS	N/A

Table 1 Design materials

Gravity Loads

For this technical report, live loads and snow loads were compared to the loads listed on the structural drawings. In addition, dead loads were calculated and assumed in order to spot check gravity members and typical columns. The system evaluations were then compared to the original design. The hand calculations for the gravity member checks can be found in Appendix A.

Dead and Live Loads

Table 2 below is a list of the live loads in which the project was designed for compared to the minimum design live loads outlined in ASCE 7-10.

Floor Live Loads								
Occupancy	Design Load (psf)	ASCE 7-10						
Parking Levels	50	40						
Retail	100	100						
Vestibules &	100	100						
Lobbies								
Office Floors	100	70= (50 psf + 20 psf						
		partitions)						
Corridors	100	100 on ground level						
		80 above 1 st level						
Stairs	100	100						
Balconies &	100	100						
Terraces								
Mechanical Room	150	-						
Pump Room,	150	-						
Generator Room								
Light Storage	125	125						
Loading Dock,	350	250						
Truck Bays								
Slab On Grade	100	-						
Green Roof Areas	30	-						
Terrace	100	100						

Table 2 Summary of design live loads compared to minimum design live loads on ASCE 7-10Note: - Means the load for the specified occupancy was not provided

Based on the above design live loads, certain spaces were designed for higher loads to create a more conservative design and to allow for design flexibility. For this technical report, the design live loads were used for the gravity member analyses.

Snow Load

The snow load was determined in conformance to chapter 7 in ASCE 7-10. A summary of the snow drift parameters are shown in table 3.

Flat Roof Snow load Calculations						
Variable	Value					
Ground Snow, p _g (psf)	25					
Temperature, Factor C _t	1.0					
Exposure Factor, C _e	0.9					
Importance Factor, I _s	1.0					
Flat Roof Snow Load, p _f	15.75					

Table 3 Summary of roof snow calculations

According to structural drawing sheet S601, the flat roof snow load was 22.5 psf whereas 15.75 psf was calculated in this technical report. According to ASCE 7-10, $p_f=0.7C_eC_tI_sP_g$, whereas according to IBC 2000, $p_f=C_eC_tI_sP_g$. The difference in the calculated flat roof snow load and the design flat roof snow load is due to a 0.7 reduction factor. The 15.75 psf value was used to determine the snow load and snow drifts. These subsequent calculations can be found in Appendix A.

Table 4 below is a list of the dead loads that were used for the gravity spot checks. The superimposed dead loads for the floor levels and roofs were assumed.

Dead Loads							
Normal Weight Concrete	150 pcf						
Curtain Wall	250 plf						
Precast Panels	450 plf						
Floor Superimposed Dead Load (ceiling, lights,	10 psf						
MEP, miscellaneous)							
Main Roof Superimposed Dead Load (ceiling,	10 psf						
lights, MEP, miscellaneous)							
Penthouse Roof Superimposed Dead Loads	5 psf						

 Table 4 Summary of dead loads

Flat Slab Interior Panel Gravity Check

The interior flat slab panel outlined in figure 15 was checked for slab thickness and column strip reinforcement. This panewas checked because it is a typical interior panel with a long span of 35 feet in the east-west direction. Due to the panel's long span, it would require a thick slab in order to control deflection and thus the slab thickness chosen for this panel will also be applicable throughout the remainder of the flat slab system.

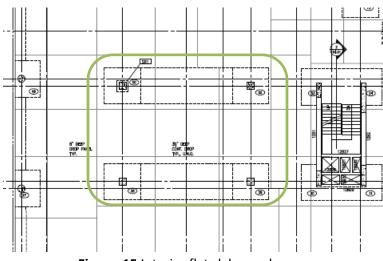


Figure 15 Interior flat slab panel

The analysis was simplified by using ACI 318 Direct Design Method (DDM) to determine the column strip moments as well as analyzed the slab as a flat plate system, neglecting the drop panels.

To begin the analysis, the slab thickness was determined according to table 9.5(c) in ACI 318. The determined slab thickness was 11". Next, the factored load was calculated and determined to be 337 psf and the uniform panel moment was M=1193 k-ft. Using the direct design method, the uniform moment was longitudinally distributed to determine the panel's negative moment and midspan moment. The longitudinal moments were then distributed transversely to the column strip. After determining the column strip moments, the column strip's reinforcement was determined.

The simplified analysis resulted in a slab thickness of 11" and (24) #8 bars were determined to resist the column strip positive moment and (13) #8 bars were determined to resist the column strip negative moment. The original design uses an 8" slab thickness reinforced with #5 bars. The gravity spot check resulted in a different slab thickness and reinforcement bar size because the analysis was oversimplified. The system was analyzed as a flat plat instead of a flat slab as well as the direct design method was used to determine longitudinal and transverse moments, which is a conservative method for analyzing this slab panel. A more thorough analysis for this system will be completed in technical report 3 by treating the slab as a flat slab as well as using the Equivalent Frame Method to determine the exact moments.

Column # 50 Gravity Spot Check

Column 50 is an interior column that starts at the basement level and expands up to the roof level. The column was sized on the 1st and 5th levels. These two locations were chosen because the slab cross section changes at the 5th level. As a design aid, the interaction diagrams from Reinforced Concrete: Mechanics and Design, 5th edition were used. After the analysis, it was determined that a 30"x30" column would be required to resist the axial load on the 1st level and a 24"x30" column would be required to resist the axial load on the 1st level and a 24"x36" column on the 1st level. Based on the gross area, the preliminary designed cross section has a percent error of 4%, which is very close to the cross sectional area of the original design. This error may be the result of the fact that

the 1st level column has a slope, and slope was neglected to simplify the analysis. The original column size for the 5th level is a 24"x24" column. Based on the gross cross-sectional area, preliminary designed cross section has a percent error of 25%, which is relatively close to original design section. The result of this error could be a combination of dead load assumptions and simplified column analysis. In technical report 3, a more thorough analysis will be performed to determine the column size.

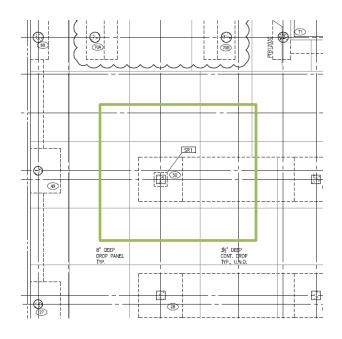


Figure 16 Column 50 with approximate tributary area

Lateral Loads

In this report, wind and seismic lateral loads were calculated to determine the loads acting on the structure's lateral system. To perform manual calculations for determining the lateral loads, simplifying assumptions were made. At this point in evaluating the structure, it was not determined how much story force was distributed to the moment frames. A more thorough analysis of the lateral system will be conducted for Technical Report 3. For Technical Report 1, the hand calculations associated with the wind and seismic loads determination can be found in Appendices B and C.

Wind Loads

Wind loads were determined using the Main Wind Force Resisting System (MWFRS) procedure (method 2) in conformance to Chapters 26 and 27 outlined in ASCE 7-10. Due to the building's complex geometry, a rectangular building shape was assumed to simplify the wind load analysis, as can be seen in Figure 17.

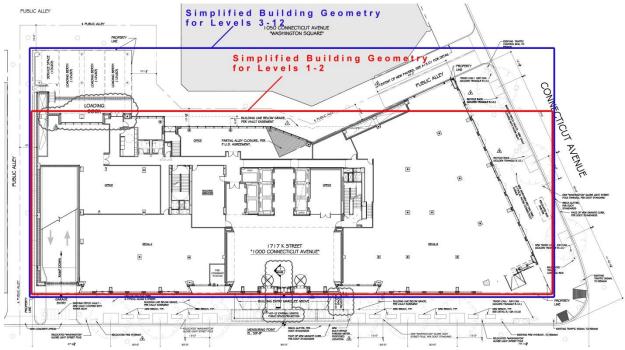


Figure 17 Simplified building shape for wind load analysis

Most of the calculations for determining the wind pressures and story forces were performed in Microsoft Excel. In the analysis, windward, leeward, sidewall, and roof suction pressures were determined. Internal pressures were neglected in calculating the design wind pressure because internal pressures do not contribute towards the external wind pressures acting on the building.

The general wind load design criteria and guest effect factors can be found in Tables 5 and 6. The calculated approximate lower- bound natural frequency for the building was 0.544 Hz, which is less than 1 Hz, therefore the gust factors were calculated in the event the building is flexible.

Further, wind pressures in the N-S and E-W directions can be seen in Tables 7 and 8 with the corresponding vertical profile sketch of the wind pressures shown in Figures 18 and 19. The story forces were then determined based on the wind pressures. The resulting base shears were 1401 k for the N-S direction and 553 k in the E-W direction. The story forces and overturning moments for both the N-S and E-W directions can be found in Tables 9 and 10 along with the vertical profile of the story forces in Figures 20 and 21.

General Wind Load Design Criteria									
Design Wind Speed, V	115 mph	ASCE 7-10, Fig. 26.5-1A							
Directionality Factor, K _d - MWFRS	0.85	ASCE 7-10, Tbl. 26.6-1							
Directionality Factor, K _d - Mechanical PH	0.9	ASCE 7-10, Tbl. 26.6-1							
Exposure Category	В	ASCE 7-10, Sect. 26.7.3							
Topographic Factor, K _{zt}	1.0	ASCE 7-10, Sect. 26.8.2							
Internal Pressure Coeficient, GC _{pi}	0.18	ASCE 7-10, Tbl. 26.11-1							

Table 5 General wind design criteria

Gust Factor-MWFRS							
N-S Wi	nd	E-W V	Vind				
Levels 1-2	Levels 3-12	Levels 1-2	Levels 3-12				
0.861 0.861		0.945	0.926				
Gust Factor-Mechnical Penthouse							
N-S Wi	nd	E-W V	Vind				
0.85		0.8	5				

Table 6 Guest Factors

		Distances	Wind Pressure
Туре	Floor	(ft)	(psf)
	1	0	11.30
	2	12.54	11.30
	3	23.17	13.08
	4	33.79	15.06
	5	44.42	16.06
	6	55.04	16.85
	7	65.67	17.64
	8	76.29	18.43
	9	86.92	19.03
	10	97.54	19.62
	11	108.17	20.61
	12	118.79	20.61
Windward Walls	Main Roof	130	21.61
Leedward Walls	Levels 1-2	0 to 23.17	-13.50
	Level 3 -12	23.17 to 130	-13.50
Side Walls	All	All	-18.91
	N/A	0 to 65	-32.52
Roof	N/A	65 to 130	-20.20
	N/A	130-260	-17.61
	N/A	>260	N/A

Table 7 N-S Wind Pressures

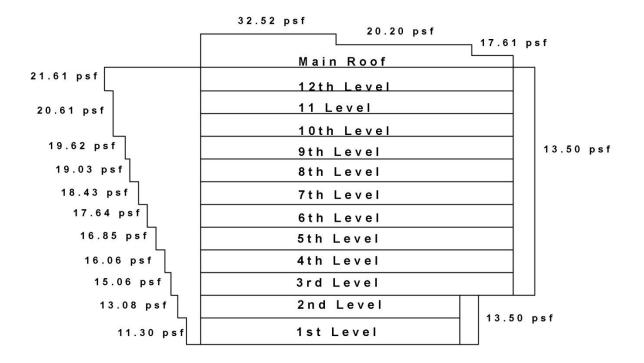


Figure 18 N-S wind pressure vertical pressure sketch

Wir	d Pressures	- E-W Directio	n
		Distances	Wind Pressure
Туре	Floor	(ft)	(psf)
	1	0	12.40
	2	12.54	12.40
	3	23.17	14.07
	4	33.79	16.20
	5	44.42	17.27
	6	55.04	18.12
	7	65.67	18.97
	8	76.29	19.83
	9	86.92	20.47
	10	97.54	21.11
	11	108.17	22.17
	12	118.79	22.17
Windward Walls	Main Roof	130	23.24
Leedward Walls	Levels 1-2	0 to 23.17	-8.03
	Level 3 -12	23.17 to 130	-8.51
Side Walls	Levels 1-2	0 to 23.17	-20.75
	Levels 3-12	23.17 to 130	-20.33
	N/A	0 to 65	-26.14
Roof	N/A	65 to 130	-26.14
	N/A	130-260	-14.52
	N/A	>260	-8.71

Table 8 E-W wind pressures

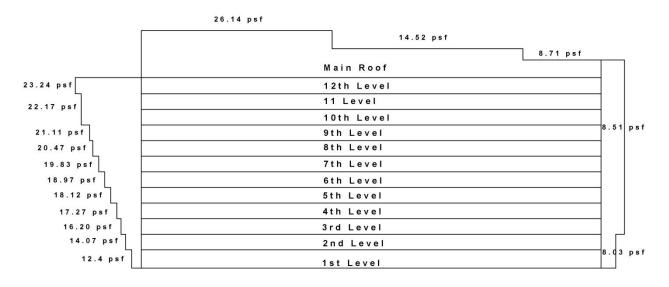


Figure 19 E-W vertical wind pressure profile

Wind Forces - N-S Direction										
		Tributary Below			Tributary Above			Story Force	Story Shear	Overturning
Floor	Elevation (ft)	Height (ft)	Length (ft)	Area (ft²)	Height (ft)	Length (ft)	Area (ft ²)	(Kips)	(Kips)	Moment (K-ft)
PH Roof	148.5	18.5	199.83	3696.86	0	199.83	0	142.82	142.82	21208.42
Main Roof	130	5.31	314.58	1671.21	0	314.58	0	58.68	201.49	7627.83
12	118.79	5.31	314.58	1671.21	5.31	314.58	1671.21	115.69	317.19	13743.40
11	108.17	5.31	314.58	1671.21	5.31	314.58	1671.21	114.04	431.23	12335.55
10	97.54	5.31	314.58	1671.21	5.31	314.58	1671.21	112.38	543.61	10961.76
9	86.92	5.31	314.58	1671.21	5.31	314.58	1671.21	109.73	653.34	9537.91
8	76.29	5.31	314.58	1671.21	5.31	314.58	1671.21	107.74	761.09	8219.83
7	65.67	5.31	314.58	1671.21	5.31	314.58	1671.21	105.43	866.51	6923.30
6	55.04	5.31	314.58	1671.21	5.31	314.58	1671.21	102.78	969.29	5656.76
5	44.42	5.31	314.58	1671.21	5.31	314.58	1671.21	100.13	1069.41	4447.57
4	33.79	5.31	314.58	1671.21	5.31	314.58	1671.21	97.14	1166.56	3282.49
3	23.17	5.31	314.58	1671.21	5.31	314.58	1671.21	92.17	1258.73	2135.69
2	12.54	6.27	314.58	1972.42	5.31	314.58	1671.21	93.35	1352.08	1170.63
1	0	0	314.58	0.00	6.27	314.58	1972.42	48.92	1401.00	0.00
								Tot	tal Base Shear =	1401 K
								Total Overtu	rning Moment =	107,251 K-ft

Table 9 N-S Story forces, base shear, and overturning moment

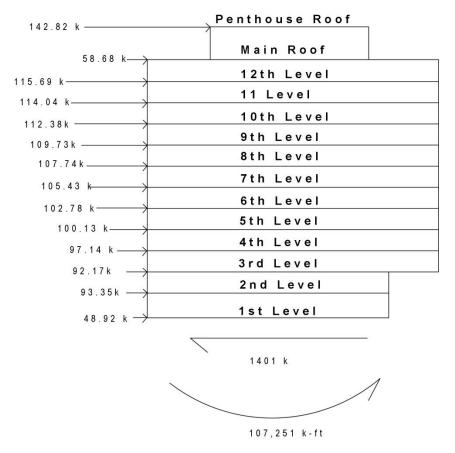
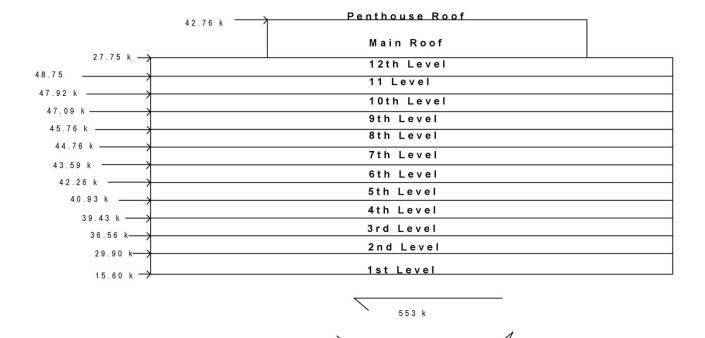



Figure 20 Vertical profile of story forces in N-S direction

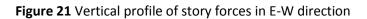

				Wind	Forces - E-W	/ Direction				
		Tributary Below			Tributary Above		Story Force	Story Shear	Overturning	
Floor	Elevation (ft)	Height (ft)	Length (ft)	Area (ft ²)	Height (ft)	Length (ft)	Area (ft ²)	(Kips)	(Kips)	Moment (K-f
PH Roof	148.5	18.5	59.83	1106.86	0	59.83	0	42.76	42.76	6349.
Main Roof	130	5.31	147	780.94	0	147	0	27.57	70.33	3583.
12	118.79	5.31	147	780.94	5.31	147	780.94	48.75	119.08	5791.
11	108.17	5.31	147	780.94	5.31	147	780.94	47.92	167.00	5183.
10	97.54	5.31	147	780.94	5.31	147	780.94	47.09	214.09	4593.
9	86.92	5.31	147	780.94	5.31	147	780.94	45.76	259.85	3977.
8	76.29	5.31	147	780.94	5.31	147	780.94	44.76	304.60	3414.
7	65.67	5.31	147	780.94	5.31	147	780.94	43.59	348.20	2862.
6	55.04	5.31	147	780.94	5.31	147	780.94	42.26	390.46	2326.
5	44.42	5.31	147	780.94	5.31	147	780.94	40.93	431.39	1818.
4	33.79	5.31	147	780.94	5.31	147	780.94	39.43	470.82	1332.
3	23.17	5.31	147	780.94	5.31	147	780.94	36.56	507.38	847.
2	12.54	6.27	121.75	763.37	5.31	121.75	646.80	29.90	537.27	374.
1	0	0	121.75	0.00	6.27	121.75	763.37	15.60	552.87	0.
								Total I	Base Shear =	553 K
	Total Overturning Moment =							42,455 K-ft		

Table 10 E-W Story forces, base shear, and overturning moment

42,455 k-ft

Seismic Loads

Seismic loads were determined using the Equivalent Lateral Force Procedure outlined in Chapters 11 and 12 in ASCE 7-10. To simplify the analysis, slab openings due to the stairwells and elevator shafts were neglected, therefore resulting in more conservative calculations. In addition, the 1st level weight was neglected and thus the 2nd-12th levels, main roof, and penthouse were considered for building weight calculations. The typical floor level slab thickness is 8" with small areas consisting of 12" slabs. For calculation simplification, a uniform slab thickness of 8" was used.

Since the lateral resisting system consists of a reinforced concrete moment frame in both the N-S and E-W directions, one analysis was performed to determine the seismic story forces and base shear for both directions.

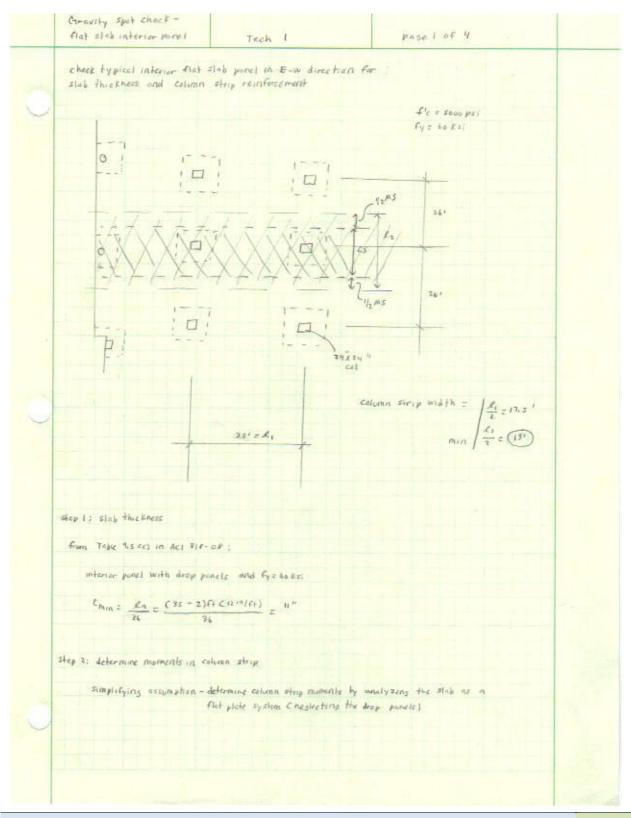
Since this building has several stories above grade, building weight was determined by calculating the dead weight for the typical floor level and applying that story weight to the other floor levels (levels 2-12). The weight on the main roof and penthouse roof were calculated separately. The weight included for summing the total building weight were the weight of the slabs, columns, drop panels, and superimposed dead loads.

After the analysis, the determined base shear was 1001 kips and the overturning moment was 95, 973 kft. Refer to Table 11 for seismic force analysis results.

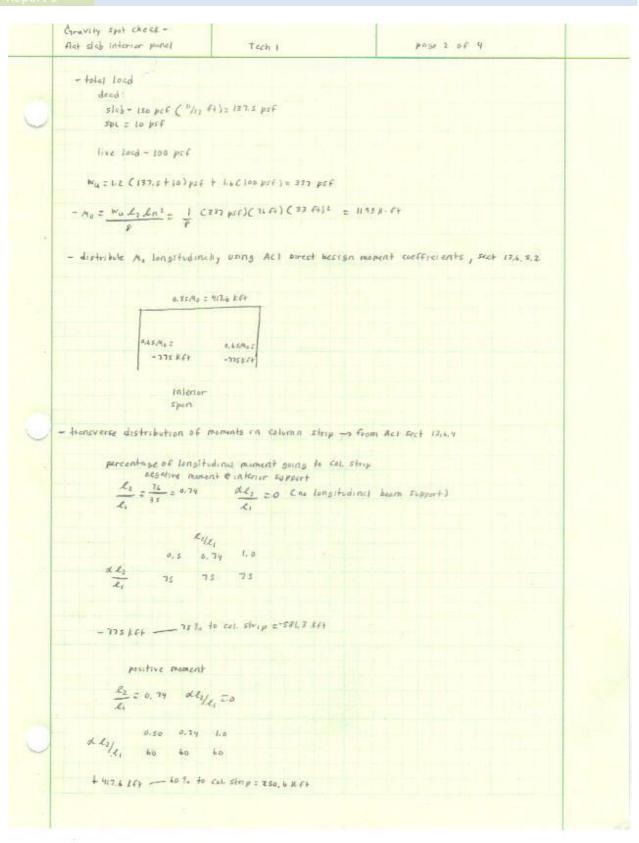
Seismic Forces												
	Height to level i	Story Height	Story Weight			Story Force	Story Shear	Overturning Momen				
	hi	h _x	Wx			fi	Vi	Mz				
level i	(ft)	(ft)	(kips)	w _x *h _x *	C _{VX}	(kips)	(kips)	(k-ft)				
DUDeef	0	140.0	754	770224	0.024	24	24	502				
PH Roof	0		754	779331	0.034	34	34	503				
Main Roof	0	129.5	4000	3434311	0.150	150	184	1941				
12	10.63		4737	3610992	0.157	158	342	1874				
11	10.63		4737	3170303	0.138	138	480	1498				
10	10.63	97.6	4737	2746158	0.120	120	600	1170				
9	10.63	87.0	4737	2339639	0.102	102	702	888				
8	10.63	76.3	4737	1952037	0.085	85	788	650				
7	10.63	65.7	4737	1584929	0.069	69	857	454				
6	10.63	55.1	4737	1240295	0.054	54	911	298				
5	10.63	44.4	4737	920716	0.040	40	951	178				
4	10.63	33.8	4737	629751	0.027	28	979	93				
3	10.63	23.2	4737	372723	0.016	16	995	37				
2	12.54	12.5	4453	149344	0.007	7	1001	8				
		Σ=	56577	22930529		1001		95973				

Table 11 Story forces, base shear, and overturning moment due to seismic loads

Conclusion

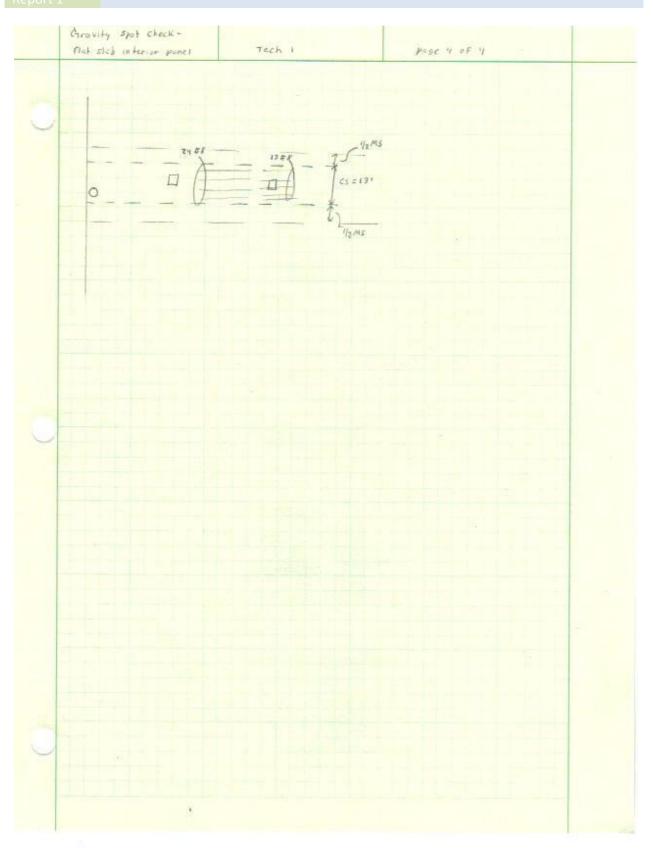

Technical Report 1 analyzed the existing structural conditions of the 1000 Connecticut Avenue, NW Office Building. The floor framing system, roof system, and lateral load resisting system were summarized with the assistance of figures and tables to fully describe the existing systems.

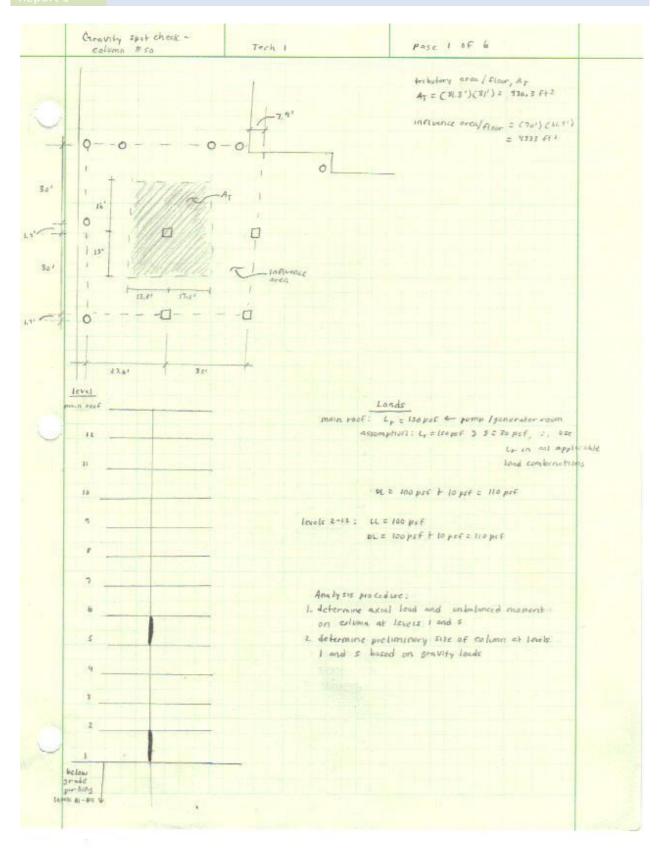
The wind loads were determined using Analytical Procedure (method 2) outlined in ASCE 7-10 and the seismic loads were determined by using the Equivalent Lateral Force Procedure outlined in ASCE 7-10. Examination of the wind forces showed that N-S wind was greatest with a base shear of 1401 k and a 107,251 k-ft overturning moment. Examination of the seismic forces showed that the calculated seismic base shear and overturning moment was 1001 k and 95, 973 k-ft.


Spot checks performed on a typical interior flat slab panel showed that the analysis simplifications resulted in a conservative slab design. On the other hand, the interior column spot check showed that the preliminary designed cross sections for levels 1 and 5 were very close to the design cross-sections.

For future reports, a thorough analysis will be performed on both the lateral and gravity members to create a more accurate design by taking into consideration lateral soil loads, lateral loads due to wind, roof uplift, and snow drift.

Appendix A: Gravity Load Calculations

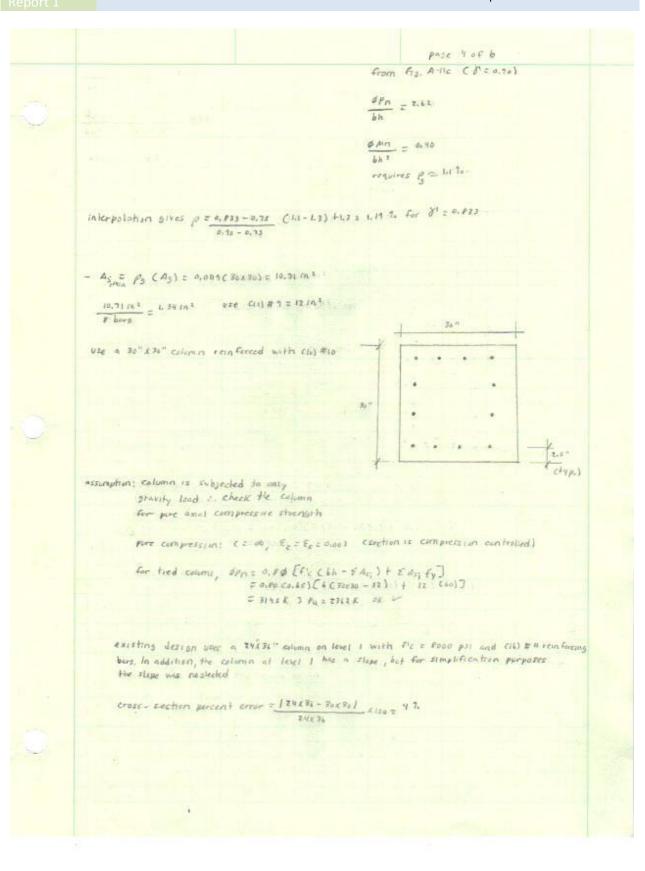

September 23, 2011



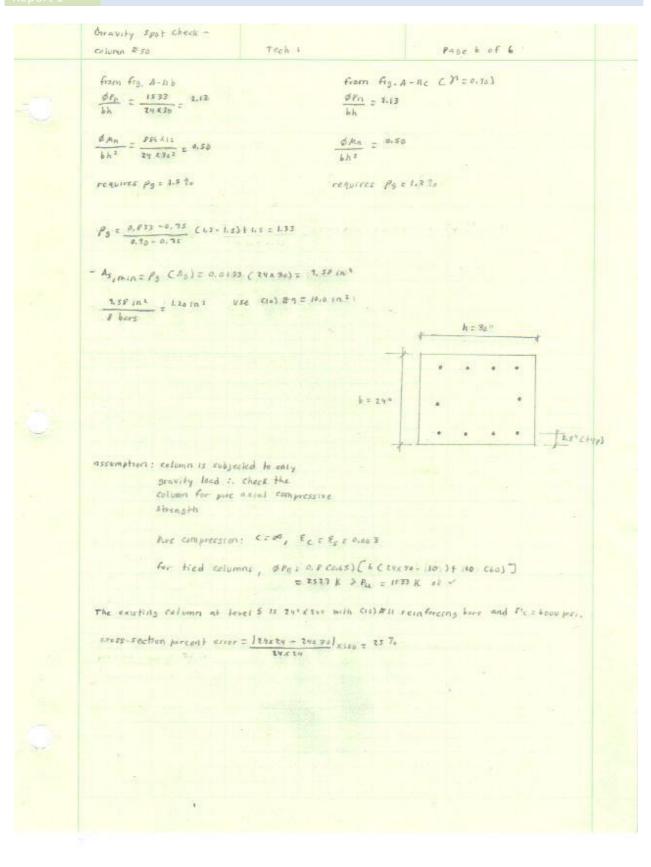
Report 1

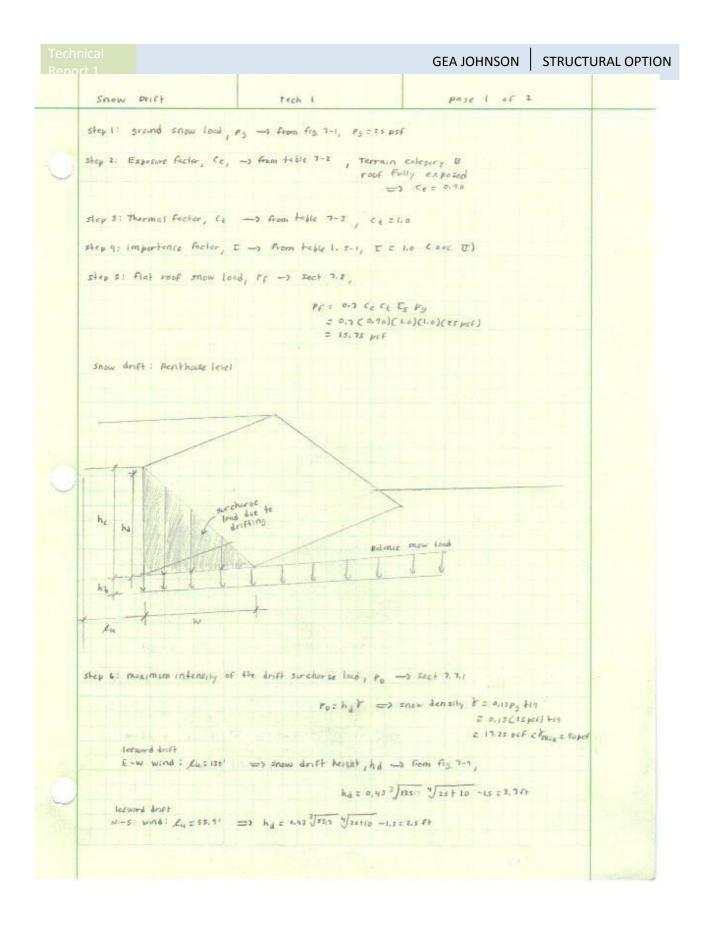
Chravity Spot ch flat slab interior			page 3 of 4				
	a day of all a d			1			
SHOP 2, PEINTORE	ement design of ealumn stop in	n interior ponel					
item na.	description	inte	ner span				
6		Au-	Aut				
4	Mu (K-f+)	-775	+ 417.6				
٤,	width of sirip, b cin) esch	156.11				
3	effective depth, d cri		7.990				
	H = 0.75 = 0.5(0.621)						
	it class friends.	#5		_			
	the second se	The second se	0.10.0				
4	$A_{n} = \frac{A_{\omega}}{a_{i}s} (r-f+)$	- 841	444				
2	$R = \frac{M_n}{kd^4} C_p z_1$	670	361				
	= An x 12000						
	156 " (7, 98") 2						
6	p from table A-3 in	010122	0.0052				
	Rein forzed concrete, #+ edit	10 m m					
	from interpolation,			_			
				_			
	$\int_{0}^{p} z \left(\frac{k - k_{1}}{n_{1} - k_{1}} \right) \left(\ell_{2} - \rho_{1} \right) + \rho$	'					
7.	As = pbd Con=)	18. 12	9, 73				
	= p (156)(214)						
A STATE OF THE STATE		11					
Γ.	As, min = 0.001862	3,1	3,1				
= 0.0016 (156)(11)							
Call III	N = larger of Jack	61	31.5 = 32				
6	0,31						
	7 # 5 hor						
	STOLEN STOLEN						
10,	Nmin = width of strip	7,24 E F	1				
	= 156						
	26113						
	To minimize the number of rein	and have been been	alined increase				
	There fore to resist the positive n	isment in the mu	Idle of the interior				
	To resist the regative moment :			16			
-	13 bas	-					

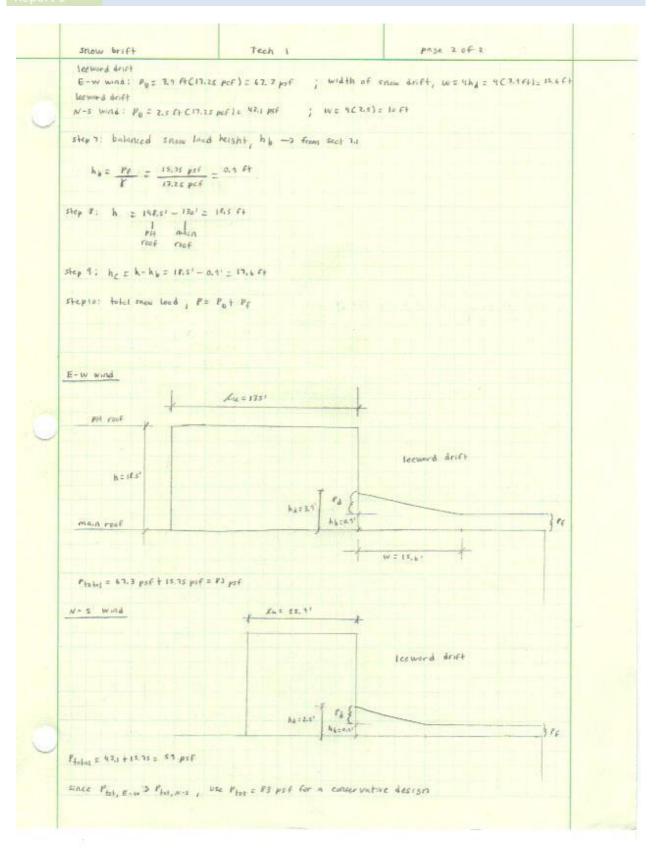
lechnical Report 1



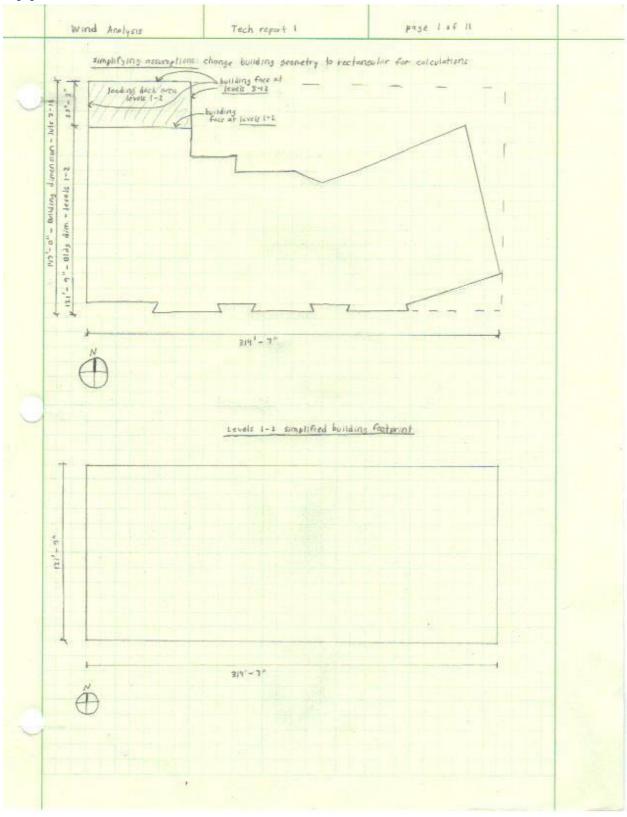
	GEA JOHNSON	STRUCTURAL OPTION
Report 1	GEA JOINISON	STRUCTURAL OF HUN

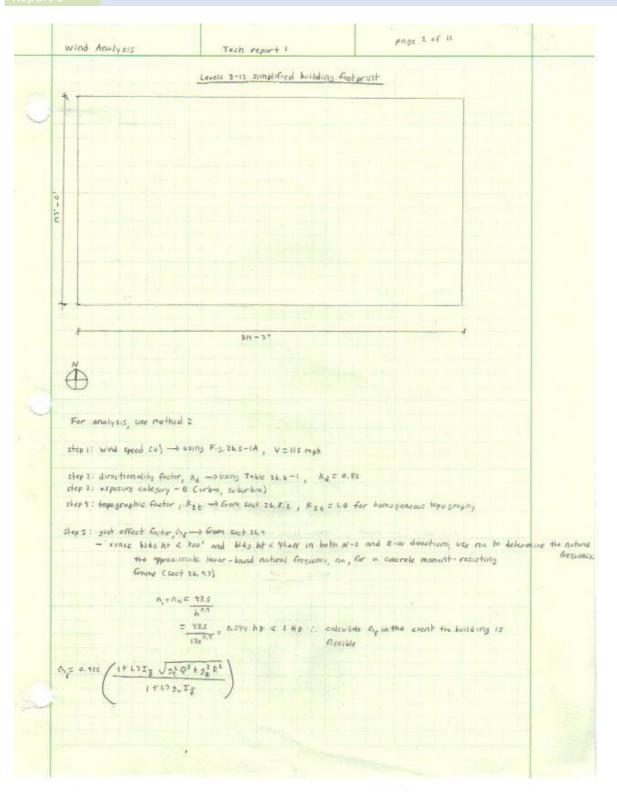

	Corravity Spot check - column # 50	Tesk I	page 3 of 6	
	The Start and the start start and the start st	Tech I	page s or b	-
	Multer of support = - 9.04 kil	(17,++75)2 and tot		
	Muleft of support = T. 09 KIG	f (2 / E Blo L+F		-
-		10		-
		N(P)2 Pro PC	· · · · · · · · · · · · · · · · · · ·	
	Auright of support = 104 (THAT I BUS KIT		
	use mus pro EFF to be a	concentration		
	MUZ THE FET IN THE	College and Colleg		
	Beelighten eiters start	Continue 1		-
	Preliminary column size f	TOP I CHILL		-
	And I AND A Real	C M.	State of the second second	-
	assault pert by an a racel	s , fic = 1000 ps; and fy = 6	e kri	
		n e H		
	$\frac{e}{P_{u}} = \frac{A_{u}}{P_{u}} = \frac{PE_{b} \times 11}{2342} = \frac{4}{3}$	23		-
	Fu 2362			
	assume d'= 2.5%	1" - h - 24"		
		8" = <u>h - 2d</u> "		
	- Set thread here foremand a	ratio to about pos = = 1, = 0.03		
	iniger reminicements -	time is made by the suit side		
	h r	elh		
	21 0,17	13 0,205		-
	2.4 0.74	41 d.1ES		- 1
	70 0.81	72 Res # 1		
	36 0.80	11 0:125		
	assumptions to enable use a	of design and interaction d	agrooms for determining the	
			specific concrele stiensth of	
		n place of the existing co		
	Fluensth of fic			
1		inforced concrete thechanics	end besion, oth edition,	
	for \$ = 9.75, Pg=1	0.03 and c/A = 0.17		
	then \$Pn = 2.9	for which b.h = $\frac{de_n}{2r_1} = \frac{2}{2r_1}$	262 = 814, 5 in 2	
	۵h	2,4 2		
		=>6=4 = 21	"s" -> try 30"x.74" celumn	
	6 . C . I			E
	from fig, A-11b			-
	BPn = 2362 = 2.62			
	b.h. 304.30			
	de norie			
	ØMA = 886 x12 = 0.40			-
	bh 2 30x 201			
	Filmer A stat			
	roluines P5 = 1.3 %			
				-
				-



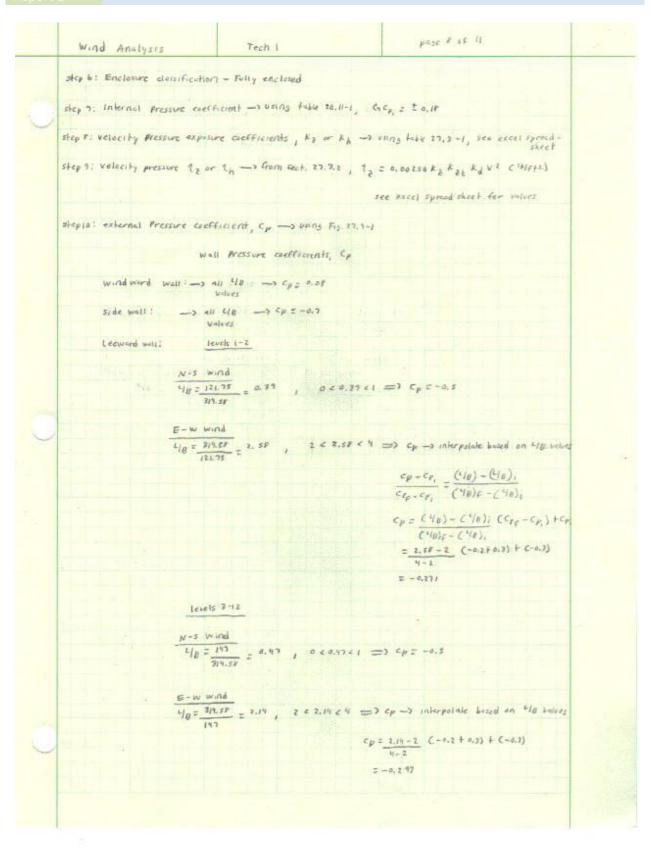

	GEA JOHNSON	STRUCTURAL OPTION
Report 1	GEA JOINISON	STRUCTURAL OF HUN

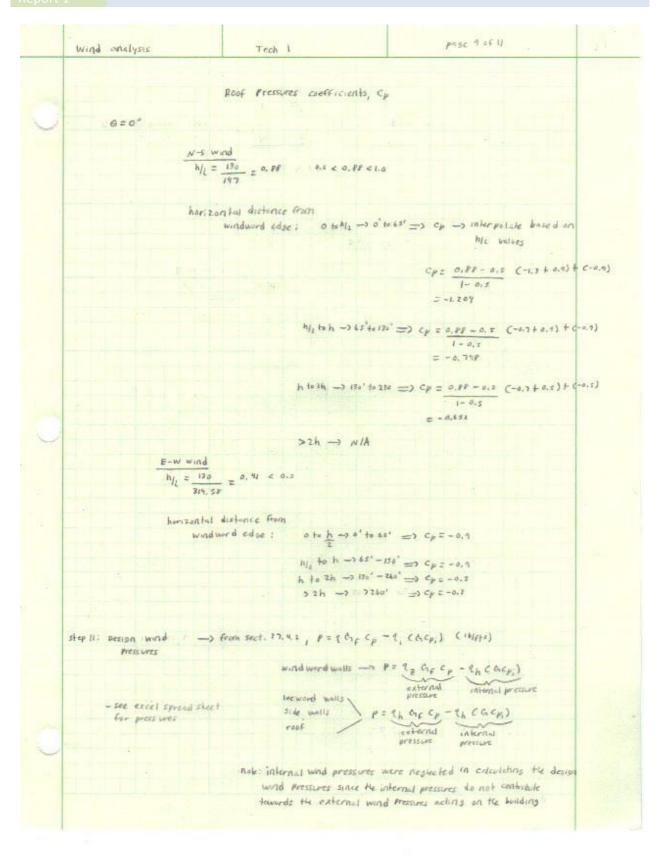
	Caravily spot chect -			
	column # so	Tech i	pase Sof 6	
	Aarel lord on column et	t level 5		
0	· land above level S: roof	+ 7 Acars		
	li reduct, factor =		use area	
	than	$\frac{4}{\sqrt{7}} \frac{15}{\sqrt{7}} = 0,336$		
	PL = e. 40 Cieo pst) C7 fles) < 170, 7 ft2/fir) = 272		
	$P_{ij} = 110 \text{ psf } C 770.3 \text{ ft}^2 \text{ ff}$	+)(2 flox) + 110 pxf (974.3 fl	"/rm#") = #54 K	
	PLe = 150 psf (170.7 fiz)			
	Pie = 12 (854) + 1,5 (272) +	645 (115,5) = 1533 K		
	Unbalanced Moment for .	column at level 5		
	- Same as Ubin for	column at level 1 Crefer 1	* j=5, 2 3	
	Freliminary Column Size	for level s		
2		Picer, fic = 6000 ps1 and f	= to k=1	
	$e = \frac{A_{ii}}{P_{ii}} = \frac{886 \times 12}{1533}$	÷ 6.99		
	assume d'= zes "			
	set torset reinforcement	t ratio to ps = 0:03 «In		
	h J ¹ 12 " 0,773 24 " 0,713	0,315		
	90" 0, 833 96" 0, 840	0.231		
	- Using fig. A-N& Good For 37: 0.75 , P3: 0.	Reinforced Concrete: mecho of and style - b Ph - Canad	nice and besign jeth edition, uge of e/h values above)	
	then then a zid for	r which $h = \frac{1122}{2r} = 59$	7. 5 (n ²	
		=> k=h= 23.4	-> try 24+ (34" cs) Long	
	1			
	142			-

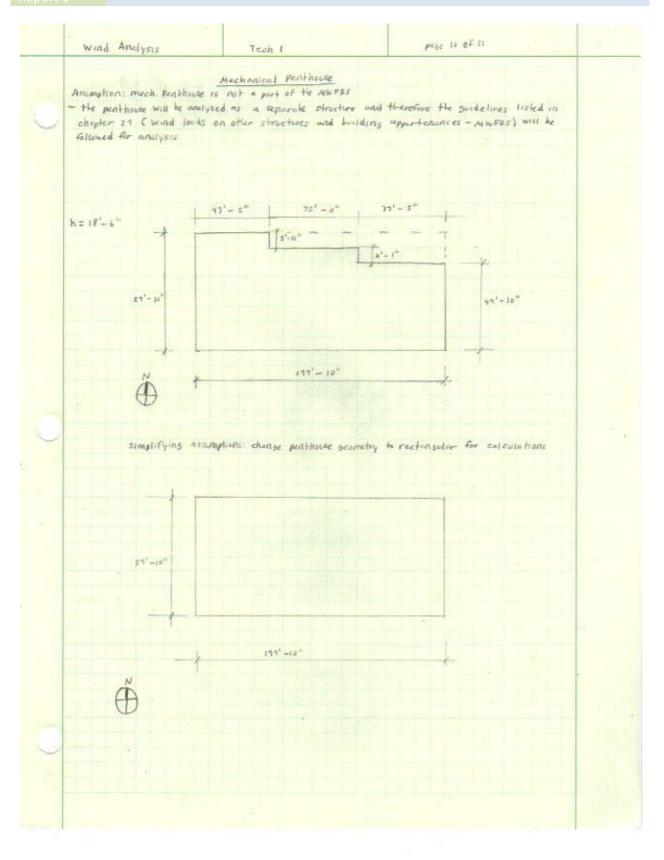

Report 1



Appendix B: Wind Load Calculations


Wind Analysis		Techi	page 3	of 11 .	
title subsidies		(Telefit)	50/04(1/		-
3,= 3,= 3.4					
See .					- 1
9-= JZIn (3,60	00 (0,549))+ 0.53	2) = 3.8136 1	6.577 4.042		
	Tak	n (3,600 (as44))	3,8136		
	ye.				
R= LRORH	EB CO.SJ to.4721)				
JP					
R. = 7.47 N					
Raz 7.47. N. CI + 10.3 N. 1 51	Ĩ3				
$N_1 = \frac{n_1 L_{\overline{2}}}{V_{\overline{2}}}$					
Va					
2= 0.6h = 0.6(1	130)=78 ft > 21	min = 20Pt of V			
1.5 A.M. 2.4	1 7 - 11	-			
town trace 26.7	-1, x = 14.0	, b = 0.45 , c = 0.20 , &	= 320 Ft, e = 13.0		
T== C / 28 146	= 0,30 (- 73) 4t	= 0.24			
1271 1271	- 77 -				
L== + / = 1ª	= 320 (7) 13 =	- 426.26			
* (3)	(33)				
	7361	the second and an is			
$\sqrt{2} = p \left(\frac{5}{5}\right) \left(\frac{5}{5}\right)$	10 V = 0.15 (-7)	$\left(\frac{V}{12}\right)^{\frac{1}{2}} \left(\frac{\delta F}{\delta \phi}\right) C \left(15\right) = \frac{\delta V}{\delta \phi} \left(11\right)$			
-					
11 - A SOU (425 7	1 2.96				
N1 = 0.594 (426.20 19.11	And F				
Rn= 7.47(2.46)	0.0788				
Rn = 7.47 (2.46) (1+10.3(2.46)	512 (I				
	-				-
	R - 0.010 (tr	for section cash in As	CE 7-10, 17+ 15 reco	mmended for concr	arl
	pe - month to the			heildig	8.7
	12-			building	
	P			building	
	P			horidin	
				buildin	
	p			boildin	
				beridin	
	p			beridin	
				keridin	
				keridin	
				beridin	


Wind Anelysis	Tech 1	page 4 of 11	1.00
North - South Direct	wa clevels 1-2)		
h = 134 ft			
L= 121.75 ft			
8 = 314.58 Ft			
$n_h = 4.5 n_1 \frac{n}{v_{-}}$	= 4.6 (0,5%) (130) 14.11 = 3.46		
	14.0		
P. S. J. J.	(1-e-17L) = 1 1	(1 - + · · (2, 10))	
TL 27	$\frac{c_1 - e^{-c_1 T_L}}{2} = \frac{1}{2c_1 + c_2} = \frac{1}{2c_2 + c_2}$	ci-c ,	
	= 0,289 - 0,04181	[0.721] = 0,247	
and the second second			
MB= HENIE =	4.6 (0.544) (314.55) = 5.36		
Vž	74.1		
Ro= 1 1	(-2(P,84))	
n Thi	$(1-e^{-2\pi L}) = \frac{1}{r_{.36}} - \frac{1}{2(r_{.36})^3}$	-	
	= 0.1116 - 0.00715(1.00		
m = 15,4 A, L	= 15.4 (0.544) (121.75) = 10.84 34.11		
			_
1.5.1.1.0	-2 ^m) = 1 1 0 000	- L (M, FY) }	
$\frac{1}{\eta} - \frac{1}{2\eta^2}$	$=e^{-\frac{1}{2}e^{R_{L}}})=\frac{1}{10,24}=\frac{1}{2(10,24)^{2}}CI=e$		- 11
	= 0,0923 - 0,00426 (1.00)	= 0, 08F	
-			
#= (1 CO. 0788) (0. 747) (0. Hz) [0.53+0.47(0.088)]		
= 0.353			
-			
Q = 1		. 0,78	
J 140.43 (Bth 144)	$= \int \frac{1}{1 + \delta_{-0.2} \left(\frac{2/4}{y_{2.5}} \frac{39 + 130}{y_{2.5}} \right)^{0.62}}$		
(§)	J = 416.26 /		
Gra 4325 (11) 3 (4)) [34 ¹ (0.78) ¹ + 840, ¹ (0.202) ¹		
	1) J3.4 2 (0.78) 2 + 4.042 2 (0.757) =		
= 0, 8%1			-


	Wind Analysis	Tech 1	page 5 of 11	1 W 1 1 1 1 1 1 1 1
	E ast-west birection c	(and 1-1)		
	h = 130 Ft	IEVELS 1 -+ 1		
	LE 3MISP Ft			
-	B = 121.75 Ft			
	ML = \$.95 Care N-5 d	(rection)		
	2 - TTP			
	Rh = 0.247 Esee N-5 0			
	ME = 4.6 (8.544) (121.75)	_ 2 9,24		
	44.11	-262232		
1	$R_{B} = \frac{1}{3.2v} - \frac{1}{2(2.2v)^{2}} c_{1}$			and the second sec
	= 0.301 - 0. 0474 C 8.19	r) = 0,261		
	ML Z 15,4 (0,544) (314,58) 94.11	= 2P, au		
3	$R_{L} = \frac{1}{2F_{OU}} = \frac{1}{2C2F}^{2}$	1-0 (28)		
	28,00 2628) 2			
	= 0, 6757 - 0, 00063P =			and a second second
	R 2 1 CO. 0785) CA.247) C = 261) [=, 53 + 0.97 (0.025)]		
	J 0.01			
1	= 0.527			
4	8 = /	- 0.83		
	$P = \sqrt{\frac{1}{1 + 0.67 \left(\frac{n}{426, 26}\right)}}$	J ^{4,62}		
	J 425,26			
	- 4 575 (1+1)(424)	3.4 t (0.22)2 + 4.042 (4.522) 1		
	16 2 0.112 (J 9.9 ¹ C0.923 ² + 4.042 ² C4.523) ² + 1.7C3.1)C0.263		
	= 0.945			
-				
				8 8
-				
-				
-	10.			

Wind Analysis	Tech 1	pase 6 of 11	
North - South birection	in clevels 3-12)		
K = 130 F + L = 143 F +			
B = 319. SP F+			
C - State II			
12 x = 4.6 (0.544) (130)	3.96		
19.11	-168-13		
$R_h = \frac{1}{3, \gamma_b} - \frac{1}{2(3, \gamma_b)^2}$	CI- e () = 0.247		
3,47 553,4735			
m = 4.6 (0. 544) (314.5F)	- F.36		
12 5 4.6 (5. 544) (314.5F)			
US-1 1180 11			
RB = 1 _ 1	$\frac{-2(r, 26)}{r^2} = 0.02$		
P.34 2CAN	1.		
m = 15 4 (0, 5W) (197)	0.42		
nt= 15, 4 CO. 544) (147)			
and all and an entry and	-2(12,05)		
$R_L = \frac{1}{iZ_0\gamma} - \frac{1}{2CiZ_0s_3^2}$	CI-+)=0.073		
13,09 2.(15,05)2			
0 - [+ (200288) (0.292)	(0,112) [0,53 + 0,47 (0,073)]		
	Company of the second sec		
= 0.351			
$Q = \left(\frac{1}{1 + c_1 c_2} \right)^{-1}$	= 0.7P		
$\varphi = \sqrt{\frac{1}{1 + 6.63 \left(\frac{31^{4}, 5^{4}}{926, 26}\right)}}$	-) · · ·		
Ge = 0.925 / 1+ 1.7 (0.26)	$\int \frac{1}{2(4^{2}(0,77)^{2} + 4(04)^{4}(4,33)^{2}} \int \frac{1}{1(7(3,4)(0,24))} + \frac{1}{2(0,77)(0,24)} + \frac{1}{2(0,77)(0,24)}$		
(1+	1.7 (3.4) [4.26]		
- Const			
₹ 0, P61			-
			_
and the second second			
A MARINE MARINE			
			11.36

	544 W M M		pase 7 of 11		
	Wind Analysis	tech 1		12	
	East - west birection	et a sail			
	h = 120 ft	(1++ 213 214)			
	L = 314 58 FF			_	
	B = 147 F4				
-	02117.11				
	ML = 3.96 Care N-S dire	(turk)		1	
	ICh Z Sine Che Mis alle	CUMU			
	Rh = 0.247 Cree N-S da	(not set		A 4 1 1 1	
	P.N. P.				
	NB = 4.6 (0.549)(142) =	8.11			
	74.11				
	$R_{BT} = \frac{1}{\frac{3}{2} \frac{1}{1}} = \frac{1}{\frac{2(3.31)^{2}}{2}} C_{1}$	- e - 1(AU) = 0.21			
	3,11 2/3,102				
	m = 15,4 (0,544) (244.58)	28,00			
	M = 15,4 (0,544) (214,58)	*			
	R. = 1 1 (1	- e (10) = 0.035			
	$R_{L} = \frac{1}{2P} = \frac{1}{2(2P)^{3}} cl$	1165 102 407 AMERTRA		1.1	
	R= [0 (0.0788) (0,243) (0.	22) [0.53 + 0.47 (0.035)			
	J 0,01			Second Second	
	= 0, 484				
	Q= 1	0.82			
~	$Q = \frac{1}{1 + 0.63} \frac{1}{\binom{147 + 136}{426, 24}}$	14.43		1 1 1 1 1	
	424,24	-			
	Car = 0.925 / 1+1.700.26) Jant (0.02) + 4.042 + Canpy,	E 1	7 0 1 0	
	· (1 +1.) Jan 2 (a. P2) 2 + 4. 042 2 (a. 984) 7 (3. 4) (0. 26)	-)		
	= 0.126				
	-				
				T. L. L.	
_					
-					

wind analy	2(2)	Tech 1	page is of li
steps: risk e	she sory -> using t	t=ble 1.s=1, risk eate	Stry II
step 2: V= HS step 2: Ka= 1	0.90		
step4: expos	ure calesory, B		
steps: Kati	= lie		and some a second s
step 7: K. or	factor, OF -> tro	$k = 1, 3 - 1, k_2 = 1.13$.85 for other structures
110d			
step #: 12	-> waing sect. 29. :	3.2, 22= 0.00256	
		= 0.00250 (= 34,43 psf	1.12)(10)(0.20)(115)2
shep 7: force cu	efficient, cp -> us	ning Fig. 27.5 -1	the second se
h/p = h	eight of structure east dirm, of se, cross	$\frac{5}{5-\frac{130}{51,83}} = \frac{2,13}{5}$	=) $c_{f} \pm \frac{\tau_{10} - 1}{2 - 1} (L_{10} - L_{10}) \pm \frac{L_{10}}{1 - 1}$
	Section 521 Crac		= 1.32
step in: wind for	rce, F -> using	sect 27:5 , F= 13 (the ce Af
Af - projected	area normal to th	ke wind	
N	-s pirection		E-w pirmetion
		19. 0. 61	
	h = 177,87618,5)=3	1676, 86 81 1	E-W Direction Ap = 57, P3 (18,5) = 1106, 86 Ft.
AF = 0	h = 199,83(18,5)=3		
AF = 8 F = 34.	h = 177,87618,5)=3 43 psf Cd.85X(1.32)(1	3616,F6 Ft ²) z 142,F K	$A_F = 53, P3 (18, 5) \in 11 ab, s \in Ft =$ F = 34, 43 (0, 85) (1, 12) (1106, Pb) = 42.8 E
AF = 8 F = 34.	h = 177,87618,5)=3 43 psf Cd.85X(1.32)(1	3616,F6 Ft ²) z 142,F K	Ap = 57, 83 (18,5) + 1146, 86 194
AF = 8 F = 34.	h = 177,87618,5)=3 43 psf Cd.85X(1.32)(1	3616,F6 Ft ²) z 142,F K	$A_F = 53, P3 (18, 5) \in 11 ab, s \in Ft =$ F = 34, 43 (0, 85) (1, 12) (1106, Pb) = 42.8 E
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$A_F = 53, P3 (18, 5) \in 11 ab, s \in Ft =$ F = 34, 43 (0, 85) (1, 12) (1106, Pb) = 42.8 E
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x
AF = 8 F = 34.	h = 177,87618,5) = 3 47 psf (4,85% 1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x
AF = 8 F = 34.	h = 177,875(18,5)=3 47.psf (4,85X(1,32)(1	3616,86 Ft ²) z 142,8 K	$Ap = 53, P3(18, 3) \in 1146, 86$ fts F = 34, 43 (0, 853(1, 32) (1106, 96) = 42.8x

Report 1

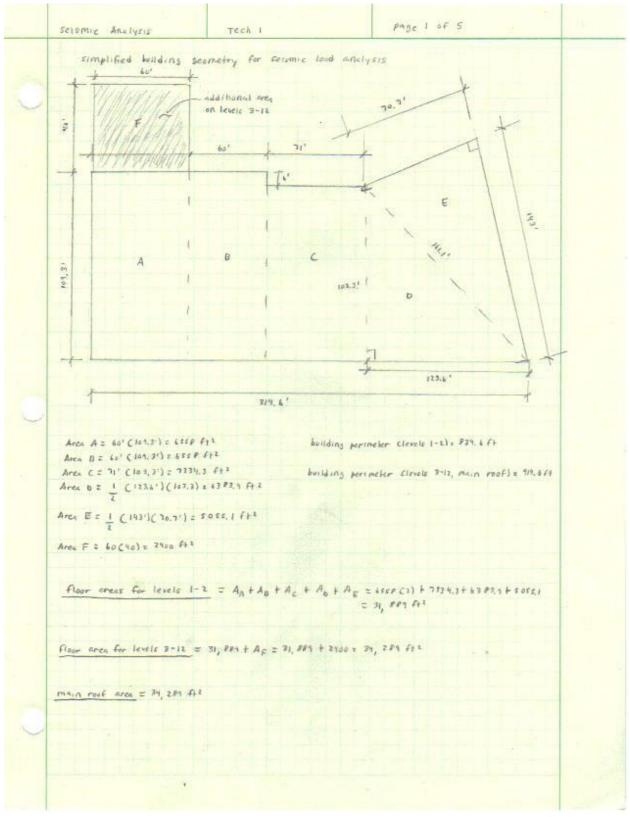
	N-S Direc	tion			E-W Dire	ction	
	h _i (ft)	L _i (ft)			h _i (ft)	L _i (ft)	
Level	(Height above grade of level i)	(Building Length at level i)	h _i *L _i	Level	(Height above grade of level i)	(Building Length at level i)	h _i *L _i
1	0	121.75	0	1	0	314.58	0
2	12.54	121.75	1526.75	2	12.54	314.58	3944.833
3	23.17	147	3405.99	3	23.17	314.58	7288.819
4	33.79	147	4967.13	4	33.79	314.58	10629.66
5	44.42	147	6529.74	5	44.42	314.58	13973.64
6	55.04	147	8090.88	6	55.04	314.58	17314.48
7	65.67	147	9653.49	7	65.67	314.58	20658.47
8	76.29	147	11214.63	8	76.29	314.58	23999.31
9	86.92	147	12777.24	9	86.92	314.58	27343.29
10	97.54	147	14338.38	10	97.54	314.58	30684.13
11	108.17	147	15900.99	11	108.17	314.58	34028.12
12	118.79	147	17462.13	12	118.79	314.58	37368.96
Main roof	130	147	19110	Main roof	130	314.58	40895.4
Σ=	852.34		124977.35	Σ=	852.34		268129.1
L _{eff} =	146.63			L _{eff} =	314.58		

GEA JOHNSON

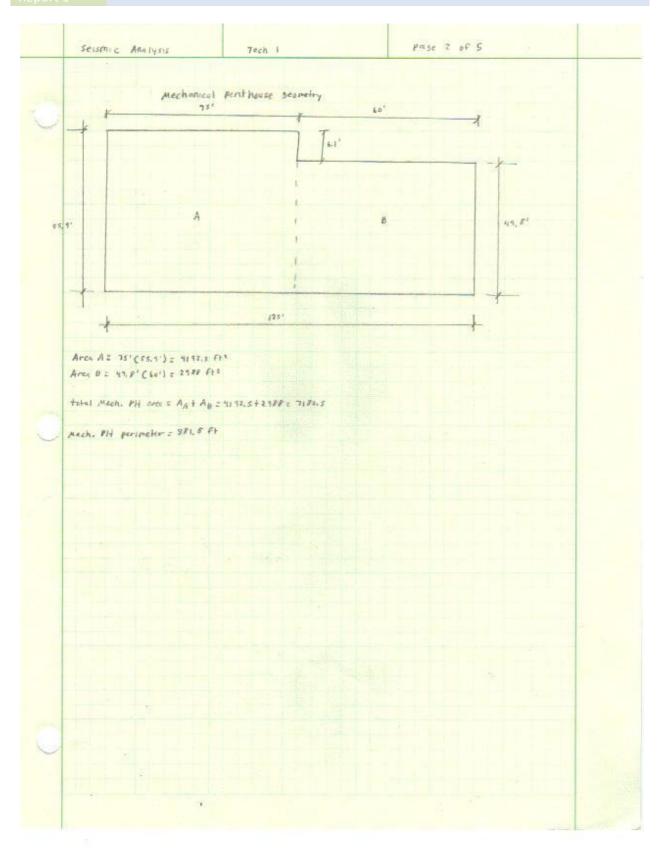
STRUCTURAL OPTION

Velocity Pressure Coefficients, K _z , and					
	Velocity Pressu	res, q _z			
Level	Elevation (ft)	Kz	qz		
1	0	0.57	16.40		
2	12.54	0.57	16.40		
3	23.17	0.66	18.99		
4	33.79	0.76	21.87		
5	44.42	0.81	23.31		
6	55.04	0.85	24.46		
7	65.67	0.89	25.61		
8	76.29	0.93	26.76		
9	86.92	0.96	27.63		
10	97.54	0.99	28.49		
11	108.17	1.04	29.93		
12	118.79	1.04	29.93		
Main Roof	130	1.09	31.37		
PH Roof	148.5	1.13	34.43		

	Gust Factor-MWFRS								
Variable	N-S	Wind	E-W Wind						
n ₁ =n _a		0.5	544						
go=gv		3.	.4						
g _R		4.0)42						
Z _{mean}		7	8						
I _{z, mean}		0.3	26						
L _{z, mean}		426	.26						
V _{z,mean}		94	.11						
N1	2.46								
R _n	0.0788								
β		0.01							
ղ	3.46								
R _h		0.2	47						
	Levels 1-2	Levels 3-12	Levels 1-2	Levels 3-12					
٩ _в	8.36	8.36	3.24	3.91					
R _B	0.112	0.112	0.261	0.22					
٩	10.84	13.09	28	28					
RL	0.088	0.073	0.035	0.035					
R	0.353	0.351	0.527	0.484					
Q	0.78	0.78	0.83	0.82					
G _f	0.861	0.861	0.945	0.926					
	Gust Fact	or-Mechnical	Penthouse	2					
Variable	N-S	Wind	E-W Wind						
G _f	0.	.85	0	.85					


September 23, 2011

1000 Connecticut Avenue | Washington DC


Wall Pressure Coeffcients, C _p						
Description	N-S	Wind	E-W	Wind		
	Levels 1-2	Levels 3-12	Levels 1-2	Levels 3-12		
/В	0.39	0.47	2.58	2.14		
Windward Walls		0	.8			
Side Walls		-0.7				
Leeward Walls	- <mark>0.</mark> 5	-0.5	-0.271	-0.293		
	Forc	e Coefficient,	C _f			
Description	N-S Wind E-W Wind		Wind			
	Mechnical Penthouse					
h/D	1	1.32	1	.32		

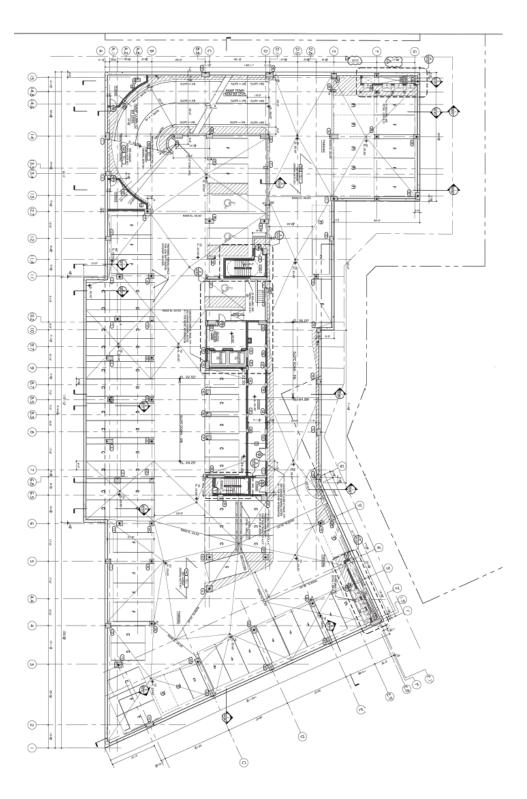
Roof Pressure Coefficients, Cp							
Description	N-S Wind	E-W wind					
h/L	0.88	0.41					
0 to h/2	-1.204	-0.9					
h/2 to h	-0.748	-0.9					
h to 2h	-0.652	-0.5					
>2h	N/A	-0.3					

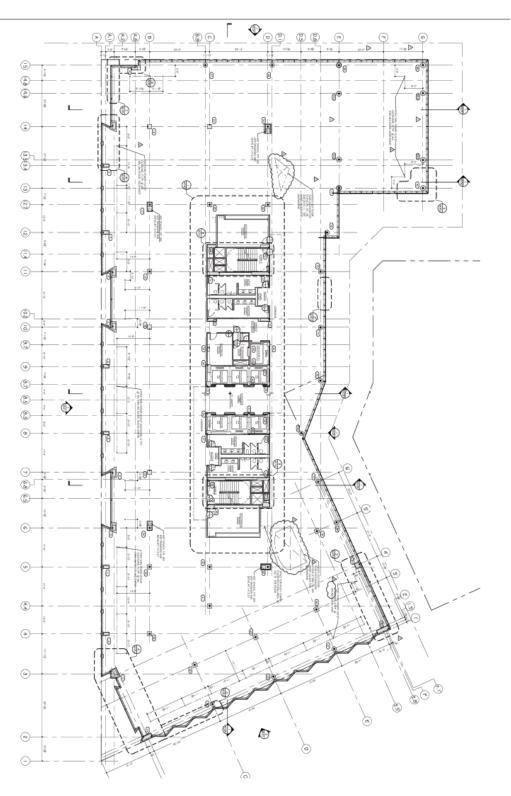
Appendix C: Seismic Load Calculations

Report 1

		The start of	PASC 3 46 5	1
-	Setsmic Analysis	Tech I	1.00	
	Building weight:			
	Mariand Mel3VI -			
	- neabort let level weight	t because level I will not a	intribule towards resisting the	
1	terstoric lands			
	- for calculation simplici	Hy, stab openings due to st	normays and elevator shafts were rester	cted,
		Pare conservative calculati		1.125A
	and level			
	Dead lands;			
	8" thick normal internet	reles iso pet x & er = 100 p	et f	
		n		
	sul = in psf			
1	curtain wall = 250 plf			
	calumn when AFFR			
-	brop porcel which the			
-	W I can be leader	(731 251 643) 1 750 MC CR	she fit t y pr kt syrke yysz k	1.0
	" Ind level = clos fio first	Collected a treated to	evenus a reacht date date	-
ŀ	levels 2-12			
1	- dead lands are the si	The is an level ?		100
F		the of the Gall a		
1	W = (110 prf) (34, 284)	A+1 + 250 PIEC 7146 FA) + 48	1K + ZURK = 4736 K / flor Claffersh = 4	1364 K
	the state of the second second			and a second second
	- Mein Hoof			
	and a state of the			
1	bead loads;			
	In thick normal with ca	nuele shike too be E		
	JOL = lo pof			_
-	curtain wat = 250 plf			2
-	W	34, 289 ft2) + 250 \$16 (119.4	EL) - 4000 K	
	main roof = colo pit ic	of many a some card		
E	Acchenical Penthouse	roof a said bay have		
F				
	head loads;			
	p" sleb = too ps	E III III III		
	spi = 5 pst			
		and the second sec		1 1 1 P
	W Hit mail = Class	456 (7181 842) = 734 K		
ŀ				
	The bound of	land - Ween to Hanne 1	17the state	
ŀ	teral worlding wild i	load = 1982 + 19764 + 1900	+ 134 = 36, 570 K	
-				
1				
1				
-				
	TT THE STAT			

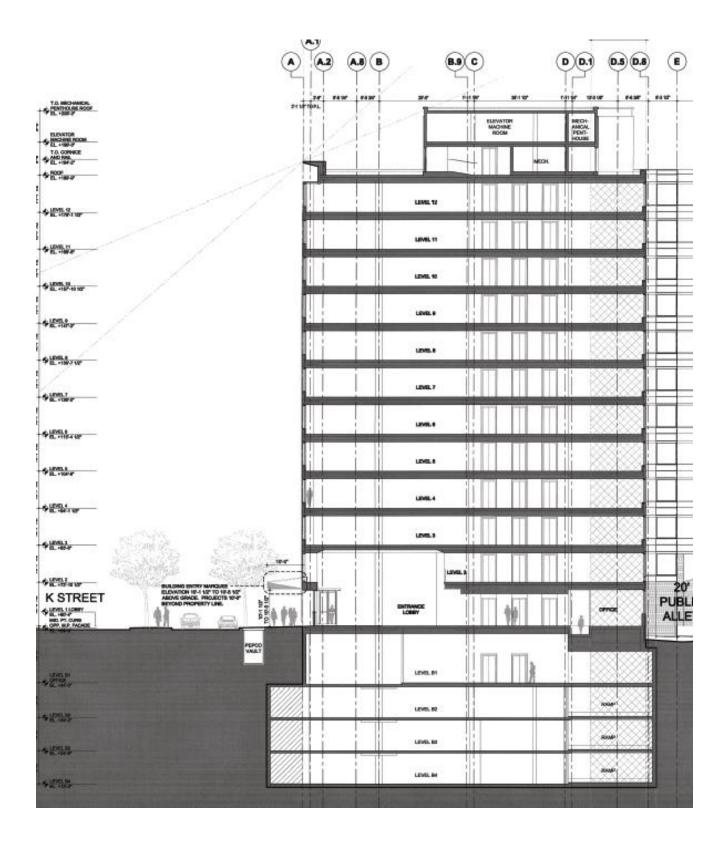
Seismic analysis	Tech 1	pase 2 of 5	
steps; site class -> owen	in seat-echnical report,	"c" Curry dense soil and have	rock, from
			+= 114 20,9-1]
step 2: spectral response as			
at short	periods, 55 -> from	Fig. 22-1, S5 = 0.20	
			1
at 1 - Fecund	l period, si -> from Fi	3, 22-2 , 5, = 0, 06	
shew? - all and and	adjusted many or a	nudered E. Q. spectrul response	
acceleration paramete		nevered to a spectral response	
	from table 11.4-1		
Sms = Fas	and and and and		and the
with ss cats a	and sile class C		
	Sm3 = 1.2 (0.20) = 0.29		P1 1
- From			The let of The
sm, = Fus,			
with s, coll a	nd sile class C		
FUELD => S	(m1 = 1.700,06) = 0,102		
			and the second
tep4 : Design Spectral respon	se acceleration porum	elers at short pariods, sos, cri	d
et 1-sec. period , spi,	for s ?, doenp => fro	n sect. 11.4.4	
$s_{bs} = 2/3 s_{ms} = 2/3 C$	and the sup		1 - 1 - 1 - 1 - 1
Sp1 = 2/3 Sm1 = 2/3 Ca.	1023 0 0.068		1.1.1.1.1.1
- D] 13 11 13			
teps: occuponcy calesory a	and importance factors		
eccupancy calesory I	II -> from hable lis-		
importance factor, I	s -> from hobie 1.s. z,	T = 1.0	
tep 6: seismic design cates	Sury, SUC		and a second
man break in the s	at the discourse and the second		and a start of the
toc baled on short	period response acrese	ration parameter 2 from tak	c 11.6 - I
for Section 11 10	d acc. II - suc = "A"		
107 -P3 - 510 - 61	10 ect. II + 30c - H		
			1.1.2.1.2.1
spc based on 1-sec 1	response acceleration 1	sorander	
10	and the second second of		1.0
for Soit PLAGE and	oce. I ~ suc = " p"		17111
t the	and the second s		
	State Cit	it callebory & is more sovere than	risk colesony A.
	use soc		deed children


Seismi	e Analysis	Tech I	page Sof S	
				-
step 7:	response modifico	tion Factor, R -> Fr	een trable 12.2-1	
	C. and an and	Forced concrete moment	6	
-	tar oranory reini	ratced concrete thomesty	manes, nes	
E 401	walent Lalens Ford	e Procedure used for	and y sis	
step #:	approximate Fondan	mentel period, T -> f	om feet, 12, P. 2.1	
-	Ter Ceha	from table 12, F-2.	" concrete moment resisting frames"	
			CE = \$1016, X = 0.9	
Т	a = 0.016 C 130) 0.4			
	= 1.278 5			
	long transitional	period -> from Fip. 2	2-12 71 = 65	
step n : 3	seismic vesponse	coefficient, Cs -> fro	orn Fect. 17.P. L.	
	6 5 Sec.			
	1 R ()	$= \frac{a_{16}}{(3/10)} = 0.0533$		
	(12)	(110)		
	and the state			
	T = 1,278 5 2	T(= 65 => Cs < _	$\frac{S_{0,1}}{(P_{f_{0}})_{T}} = \frac{a_{100F}}{(\frac{3}{f_{1}})(1.23F)} = a_{1}a_{1}a_{1}a_{2}a_{3}$	
			(7)(5) F (3), (1.238)	
		3 0.	ol v sk .	
		and the second set		
		alculating the base she	to controls and thus it is the value	
	WEL 17 MICH IN	concreated for some the	F V.	
step is: 1	base sheer, V			
	V= Cs W = 3.0177	(56570) = 1001 K		
Step 11: 6	estrable selemic base	sheer, U, to stary leads	->> From Sec. 12. 8.2	
E.	e cue V			
		K = 1,278.	- 0, 5 (2-1) +1 = 1.789	
CUL	E WK hx K	Z.\$ -	0,5	
	Ew, h, F			
	14.9			
3	a story forces and ove	orterning memorial calculat	ed in excel spread sheet	
	10.			


Floor Weight Calculations							
Floor	Area	Perimeter	8" slab weight	Superimposed DL	Curtain Wall	Total Weight	
	(ft ²)	(ft)	(psf)	(psf)	Weight (plf)	(Kips)	
2	31889.00	834.6	100	10	250.00	3716	
3	34289.00	914.6	100	10	250.00	4000	
4	34289.00	914.6	100	10	250.00	4000	
5	34289.00	914.6	100	10	250.00	4000	
6	34289.00	914.6	100	10	250.00	4000	
7	34289.00	914.6	100	10	250.00	4000	
8	34289.00	914.6	100	10	250.00	4000	
9	34289.00	914.6	100	10	250.00	4000	
10	34289.00	914.6	100	10	250.00	4000	
11	34289.00	914.6	100	10	250.00	4000	
12	34289.00	914.6	100	10	250.00	4000	
Main Roof	34289.00	914.6	100	10	250.00	4000	
PH Roof	7181.00	381.8	100	5	N/A	754	
				Total	Floor Weight=	48475	

Size	Typical Floor Colum	Length	Unit Weight	Volume	Weight
(in x in)	Quantity	Clear Span(ft)	(lbs/ft ³)	(ft ³)	(Kips)
18X36	4	9.96	150	179.25	26.8
16X32	7	9,96	150	247.85	37.10
18X28	1	9.96	150	34.85	5.23
18X42	3	9.96	150	156.84	23.53
24X30	6	9.96	150	298.75	44.8
24X24	10	9.96	150	398.33	59.7
24 dia	12	9.96	150	375.2	56.28
16X48	2	9.96	150	106.22	15.93
16X66	1	9.96	150	73.03	10.9
14X48	2	9.96	150	92.94	13.94
12X24	5	9.96	150	99.58	14.94
22X26	1	9.96	150	39.56	5.93
20.5X24	1	9.96	150	34.02	5.1
22X24	1	9.96	150	36.51	5.4
14X96	1	9.96	150	92.94	13.9
24X36	2	9.96	150	119.50	17.93
28X28	3	9.96	150	162.65	24.4
12X48	1	9.96	150	39.83	5.9
11X24	4	9.96	150	73.03	10.9
16X96	1	9.96	150	106.22	15.9
14X66	1	9.96	150	63.90	9.5
28 dia	8	9.96	150	340.5	51.0
18X64	1	9.96	150	79.67	11.9
		Column Weigh	it per floor (11	total flrs)=	48
			Total Colum	nn Weight=	536
	Typical Floor Drop Pa	anel Weight (4tł	h Level)		
Size		Thickness	Unit Weight	Volume	Weight
(in x in)	Quantity	(in)	(lbs/ft ³)	(ft ³)	(Kips)
	Continuous Drop (around				
36 wide	perimeter of all floors)	3.50	150	800.28	12
min. 68X68	40	8.00	150	856.3	12
	Dr	op Panel Weigh	t per floor (11	total flrs)=	24
			otal Drop Pan		273

1000 Connecticut Avenue | Washington DC


Appendix D: Typical Floor Plans

Typical underground parking plan rotated 90 degrees CW

Typical Floor plan oriented 90 degrees CW

	GEA JOHNSON	STRUCTURAL OPTION
Report 1	GEA JOINISON	STRUCTURAL OF HUN